UNCLASSIFIED

AD NUMBER ADB804975 CLASSIFICATION CHANGES TO: unclassified FROM: restricted LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to DoD only; Administrative/Operational Use; JUN 1945. Other requests shall be referred to National Aeronautics and Space Administration, Washington, DC. Pre-dates formal DoD distribution statements. Treat as DoD only.

AUTHORITY

E.O. 10501 dtd 5 Nov 1953; NASA TR Server website

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE

No. 996

NET HEAT OF COMBUSTION OF AN-F-28 AVIATION GASOLINES

By R. S. Jessup and C. S. Cragoe National Bureau of Standards

FOR REFERENCE

NOT TO BE TAKEN FROM THIS ROOM

Washington June 1945

CLASSIFIED DOCUMENT

This document contains olsesified information affeoting the Mational Defence of the United States within the meaning of the Espionage Act, USC 50:31 and 32. Its transmission or the revelation of its contents in any manner to an unauthorised percent is prohibited by iaw. Information so classifier

may be imparted only to persone in the military and naval Services of the United States, appropriate civilian officers and employees of the Federai Government who have a legitimate interest therein, and to United States citizens of known loyaity and discretion who of necessity must be informed thereof

RESTRICTED

NATIONAL ADVISORY COMMITTEE FOR AERCNAUTICS

TECHNICAL NOTE NO. 996

NET HEAT OF COMBUSTION OF AN-F-28 AVIATION GASOLINES

By R. S. Jessup and C. S. Cragoe

SUMMARY

Experimental data on the heats of combustion and hydrogen contents of a number of aviation gasolines have been used in deriving a formula for computing net heat of combustion from (measured) gross heat of combustion. This formula appears to be sufficiently reliable for the purpose and has the advantage of making hydrogen determinations unnecessary.

The data on heats of combustion are presented in tabular form, and in graphs showing the relation between net heat of combustion and (1) hydrogen content, (2) aniline point, (3) API gravity, and (4) the product of aniline point and API gravity.

Data are given on the change in aniline point with time, and also the change resulting from the addition of xylidine.

INTRODUCTION

The work covered by this report was undertaken at the request of the National Advisory Committee for Aeronautics in order to determine a reliable method of estimating the net heat of combustion (1) when the gross heat of combustion is known, and (2) when the gross heat of combustion is not known.

MATERIALS INVESTIGATED

The samples of gasoline originally investigated in connection with this project included 29 production samples of AN-F-28 aviation gasolines submitted by individual refiners

at the reducst of the Petroleum Administration for War, and two other samples of experimental fuels which were widely used in cooperative tests. Recent measurements of heat of combustion have also been made on 26 other samples of AM-F-28 aviation gasolines from various refiners, and the data obtained on these fuels are included in this report.

The producers of the gasolines investigated, and the number of samples supplied by each are listed below.

Pn	~ 4	77.0	27

Number of samplesa

-	Abananawhia & Hawminan Ail Ga				
	Abercrowbie & Harrison Oil Co. l Atlantic Refining Co. l (1	t)			
		2 (•		
	Gulf Oil Corporation 2 (2	٥). . (•		
	Humble Oil & Refining Co. 2 (1	F.7 · · ·			7.
	nago orr and rransport, bld.	٥ <u>/</u> .	٠.		
	Nagnolia Petroleum Co.	3) .			
		l)			
	Richfield Oil Co.	ĻΣ	:		
	Shell Oil Co. 4 (4	1)			_
	Socony Vacuum Oil Co. 4 (3	3) 、	•	•	
	Scoony Vacuum Oil Co. 4 (3 Stendard Oil Co, of California 2 (1 Standard Oil Co, of Taliana	1)			· <u>· -</u>
	blandard our co. or indiana	,			· .
	Standard Oil Co. of Louisiana 4 (3		•		•
	Standard Oil Co. of New Jersey 2 (2 Standard Oil Co. of Ohio 1 (1 Sun Oil Co. 2 (1	3)			-
	Standard Oil Co. of Ohio	1) [
	Sun Oil Co. 2 (1	T)		•	
	Texas Co, 3 (2				
	Tidewater Association Oil Co. 1 (1	L)			
	Union Oil Co. 2 (1				
	White Star Refining Co. 1 (1	7			
	IIn a mana 4 & 4 a 4				
	ourspectined in the first transfer of the fi	= <i>(</i>			
	the contract of the contract o	*			

The numbers in parentheses represent gasolines included in the original group of samples 1 to 31, inclusive (tables 1 and 3).

DATA AND MOTHODS OF TEST

The specific gravity, and distillation data on the 31 gasolines originally investigated are given in table 1. Table 2 gives values of gravity, aniline point, hydrogen content, observed gross and net heat of combustion for these gasolines, values of net heat of combustion calculated from

a relation (equation(5)), derived from the results of the present work, which expresses net as a function of observed gross heat of combustion, and values of net heat of combustion calculated from the relation between gross and net heat of combustion given in specification AM-F-28, amendment 3. Table 3 gives values of gravity, aniline point, observed gross and calculated net heat of combustion for the 26 samples whose hydrogen contents were not determined. Each value of gross heat of combustion given in tables 2 and 3 is the mean of two determinations which usually agreed within less than 0.05 percent, although in a few cases the difference was as much as 0.1 percent.

The aniline points were determined in accordance with A.S.T.M. Method D611-44T. The carbon and hydrogen contents of gasolines 1 to 31 inclusive were both determined by combustion analysis. Except as noted, the hydrogen, percent by weight, reported in table 2 is the mean value of percent hydrogen as determined from water formed in combustion, and 99.8 minus percent carbon determined from CO₂, the value reported agreeing with these values in general to about O.1 or O.2 percent hydrogen. (The value 99.8 assumes O.2 percent nonhydrocarbon present from 4 ml/gallon of tetraethyl lead.)

The bomb colorimeter and accessory apparatus, and the method of calculating results on gross heat of combustion have been described (reference 1). Two different types of thin-walled glass bulbs, previously described (references 2 and 3), were used to inclose the gasoline samples to prevent loss by evaporation, so that the mass of sample burned could be accurately determined. No significant difference was found in the results obtained with the two types of bulbs. The gross heat of combustion at constant volume was measured at about 30° C. In order to permit comparison of the results with data on pure hydrocarbons, most of which are referred to 25° C, the values of Q_v (gross) at 25° C, which are given in table 2, were calculated from the observed values of 30° C, using the following values of specific heats:

Gasoline (liquid) $C_p = 2.1 \text{ j/g deg C}$ Oxygen (gas) $C_v = 20.82 \text{ j/mole deg C}$ Carbon dioxide (gas): $C_v = 28.08 \text{ j/mole deg C}$ Water (liquid) $C_p = 75.29 \text{ j/mole deg C}$

The amounts of water formed in combustion of gasolines 1 to 31, inclusive, were calculated from the values of (percent H) given in table 2. For the remaining gasolines the values of (percent H) used were calculated from a relation between $Q_{\mathbf{v}}$ (gross) and (percent H) derived from equations (1) and (4), given later. This relation between $Q_{\mathbf{v}}$ (gross) and (percent H) and the values of specific heats given above, have been used to calculate values of the constant A in the relation:

 Q_v (gross, 25° C) = Q_v (gross, t° C)+A(t-25)

The values of A calculated in this way are as follows:

Q _v (gross)			A	
Btu/lb		Btu/	(1b) (deg	c)
and the second second				
19600		:	1.12	
19800	i		1.21	
20000			1.30	
20,200			1.38	
20,400	1944 - 544 F		1.47	
80e00			1.55	:
				:

UNIT OF HAT

The calorimeter was calibrated electrically and checked at intervals by burning standard samples of benzoic acid of known heat of combustion. Thus, the energy equivalent, or effective heat capacity, of the calorimeter, was evaluated in terms of international joules (watt-seconds) per degree centigrade. The temperature rise of the calorimeter was measured with a platinum resistance thermometer. The weight in air of the gasoline burned was measured in grams. The observed gross heats of combustion were obtained in terms of international joules per gram weight in air against brass weights. For conversion to Btu/lb, use was made of the international steam table calorie (IT cal) defined as 1 IT cal = 1/860 international watt-hour, and the relation 1 IT cal/g = 1.8 Btu/lb. These two relations yield the convenient conversion factor

and the second

1 int
$$\frac{1}{g} = \frac{860}{3600} \times 1.8 = 0.43 \text{ Bfu/1b}$$

Thus, the unit of heat used in this report is the same unit used in all modern steam tables, for example, reference 4.

RELATION BETWEEN GROSS AND NET HEATS OF COMBUSTION

In order to meet Specification AN-F-28 a gasoline must have a net heat of combustion of at least 18700 Btu per pound. Amendment 3 of this Specification requires determination of heat of combustion by means of an "oxygen-bomb calorimeter" which yields gross heat of combustion at constant volume $Q_{\rm v}$ (gross). In order to obtain values of net heat of combustion at constant pressure $Q_{\rm p}$ (net) from the results of bomb-calorimetric measurements, it is necessary to use a conversion relation, for example, with all Q in Btu/lb.

$$Q_p$$
 (net) = Q_v (gross) -91.23 (percent H) $(1)^{n+2}$

Values of heats of combustion of pure compounds are usually reported as gross heats of combustion at constant pressure Q_p (gross) at 25° C. For comparison with the data on gasolines, values of Q_p (net) for pure compounds were calculated from the reported values of Q_p (gross) using the relation

(2) (1) (2) (net) =
$$Q_p$$
 (gross) - 93.87 (percent H)

where the Q's are expressed in Bty/15. The numerical values of the coefficients of (percent H) in equations (1) and (2) depend only on the molecular weights of H2, and H2Q, and on the properties of water. Using H2 = 2.016 and H2O = 18.016 for molecular weights, and the value 1050.4 Btu/15 (reference 4) for the heat of vaporization of water at 77° F (25° C), there is obtained:

18.016 x 1050.4 = 9387 Btu/1b

of hydrogen for the heat of vaporization of the water formed in combustion. Since the hydrogen content of the gasolines is expressed in percent by weight, the coefficient of (percent H) in equation (2) becomes 93.87.

When O_2 (gas) combines at constant pressure (or constant volume) with solid carbon, or with carbon in a solid or liquid compound, to form CO_2 (gas) there is practically no change in volume (or pressure). When O_2 (gas) combines at constant pressure with the hydrogen in a solid or liquid compound to form H_2O (liquid), there is a decrease in volume, and external work (= pV/2) is done on the system, where pV is the product of the pressure and the volume of the water formed if it is in the gaseous phase at the temperature to which the reaction is referred. The external work done in the constant pressure process is included in the heat of the reaction at constant pressure Q_p (gross) which is therefore greater than Q_V (gross) by the thermal equivalent of the work done pV/2. Using the values at 77° F given in reference 4.

pV/2 = 29.53 Btu/lb of water

 $\frac{18.016}{2.016}$ × 29.53 = 264 Btu/lb of hydrogen

From this it follows that

 Q_p (gross) = Q_v (gross) + 2.64 (percent H) (3)

where the Q's are expressed in Btu/lb. Combining this relation with equation (2) yields the conversion relation (equation (1)). Equation (1) was used to calculate the "observed" values of Q_p (net) reported in table 2 for gasolines 1 to 31 inclusive, from the values of Q_v (gross) and (percent H) given in the table. Equation (2) was used to calculate values of Q_p (net) from values of Q_p (gross) at 25°C reported for pure hydrocarbons.

COMPARISON OF NET HMATS OF COMBUSTION OF GASOLINES AND HYDROGARBONS

A comparison of data on gasolines and hydrocarbons is shown graphically in figure 1. The data on n-paraffins and iso-paraffins were taken from references 2, 3, and 5. The points in figure 1 designated as representing data on iso-paraffins are for the 2,2-dimethyl isomers only, since the data for the other isomers all lie between those for the 2,2-dimethyl isomers and the corresponding n-paraffins. The data on aromatics and cyclics were obtained from recent unpublished measurements at the Rational Bureau of Standards and other laboratories. The data on pure hydrocarbons are believed to be more accurate than the data on gasolines. The straight line in figure 1 represents a reasonable mean relation between net heat of combustion and percent hydrogen. A similar relation was pointed out by Jones and Starr (reference 6) who reported measured values $Q_{_{\rm TF}}$ (gross) and (percent H) on 19 gasolines. results were converted to Q_n (net) by means of relation (1), and the values obtained are plotted in figure 1.

CALCULATION OF NET FROM GROSS HEAT OF COMBUSTION

As shown in figure 1, the data on gasolines 1 to 31, inclusive, are in good accord with the data on pure hydrocarbons, and both sets of data indicate a fairly reliable linear relation between Q_p (net) in Btu/lb at 77° F and (percent H), namely:

$$Q_{p}$$
 (net) = 15365 + 234 (percent H) (4)

for gasolines composed essentially of hydrocarbons. Combining this equation with the conversion relation for 77° F, previously given

$$(Q_p)(net) = Q_v (gross) - 91.23 (percent H)$$
 (1)

Pives

$$Q_{p}$$
 (net) = 4310 + 0.7195 Q_{v} (gross) (5)

which supplies a convenient method of obtaining $\mathbf{Q}_{\mathbf{p}}$ (net) from a measured value of $\mathbf{Q}_{\mathbf{v}}$ (gross).

It may be noted from table 2 that values of Q_p (net) calculated from equation (5) for the gasolines 1 to 31 inclusive differ from the observed values by amounts ranging up to 0.2 percent, the average difference being a little less than 0.1 percent. The values of Q_p (net) given in table 3 for gasolines 32 to 57, inclusive, were calculated from equation (5), since hydrogen contents were not determined for these gasolines. The values of net heat of combustion given in the last column of tables 2 and 3 were calculated from the equation given in Specification AN-F-28 (amondment 3); namely, net Btu/lb = 4525 + 0.7070 x gross Btu/lb.

RELATIONS BETWEEN NET HEAT OF COMBUSTION,

API GRAVITY AND ANILINE POINT

The values given in table 2 for Q_p (net) calculated from equation (1), and values given in table 3 for Q_p (net calculated from equation (5) are plotted in figures 2, 3, and 4, which indicate approximate linear relations between net heat of combustion and aniline point, API gravity, and the product of aniline point and API gravity, respectively. It is obvious from the figures that API gravity is not so good a criterion for net heat of combustion as either aniline point, or the product of aniline point and API gravity.

The straight lines in figures 2 and 4 are represented by the following equations which were derived by the method of least squares:

$$Q_{p}$$
 (net) = 17727.7 + 8.494 (AnPt) (6)

$$Q_n \text{ (net)} = 17992.0 + 0.09839 \text{ (AnPt-Gr)}$$
 (7)

where Q_p (net) is the net heat of combustion at constant pressure in Btu/lb and (AnPt) and (AnPt-Gr) are aniline

point in dogrees Fahrenheit, and the product of anilino point in degroes Fahronheit and gravity in degrees API, respectively. The standard doviations of the measured heats of combustion from values calculated from equations (6) and (7) are 24.4 and 23.8 Btu/lb, respectively. The respective correlation coofficients aro 0.9657 and 0.9644. Thus there is little reason to chooso between the two criteria in the case of tho data undor discussion. However, as the gravities are not ordinarily determined as procisely as in the present data, and as added orror in this dotormination will increase the orror of the estimated heat of combustion, it appears that the aniline point is a somewhat more reliable criterion of the net heat of combustion.

According to equation (6) an aniline point of 114.5° F corresponds to a net hoat of combustion Q_p of 18700 Btu/lb. However, as is ovident from figure 2 the actual heats of combustion do not follow this relation exactly. If it is dosirod that thore shall be only I chance in 10 of the net hoat of combustion boing below 18700, thon the minimum aniline point must be set at 119° F; for 1 chance in 100 the aniline point must be set at 122° F. According to equation (7) an aniline-gravity product of 7200 corresponds to a not heat of combustion Q_p of 18700 Btu/lb, and the values 7596 and 7821 for the product correspond to 1 chance in 10, and I chance in 100, respectively, that the not heat of conbustion will be below 18700 Btu/lb.

A change of 50 Btu/1b in the minimum acceptable not heat of combustion requires a corresponding change of 5.89 degroes Fahrenhoit in the minimum anilino point, or a chango of 508 in the aniline-gravity product.

Values of Q_{n} (net) calculated from equation (6) for integral values of aniline point from 90° to 149° F are given in table 5. Values of Q_p (net) calculated from equation (7) for integral values of the anilino-gravity product in the range 5000 to 10400 are given in table 6.

EFFECT OF NONHYDROCARBONS ON NET HEAT

OF COMBUSTION

Of some interest are the following approximate values:

	Matorial	Qp (gross)	Q _p (not)	Donsity
11CO O J A J CO J.		k cal/mole Btu/li		g/ml
(a)	Pb (C ₂ H ₅) ₄	.a 1487	7950	1.659 at 18° 0
(b)	C ₂ H ₄ Br ₂	² 282	2500	2.178 at 20° C
	Ethyl fluidb	******	5890	1.85
	Xylidino	1108	15590	· · · · · · · · · · · · · · · · · · ·

aValues supplied by Ethyl Corporation

bAssumed to consist of 62 percent (a) and 38 percent (b) by weight.

Using the value 0.72 g/ml for the density of gasoline, and the values of density and heat of combustion given above for $Pb(G_2H_5)_4$, $G_2H_4Br_2$, and ethyl fluid, it has been calculated that the addition of the amount of ethyl fluid equivalent to 4.6 milliliters of $Pb(G_2H_5)_4$ per gallon of mixture, lowers the net heat of combustion of gasoline at constant pressure by 0.31 percent, and that the addition of xylidine lowers the net heat of combustion by 0.17 percent for each 1 percent by weight of xylidine added.

EFFECT OF TIME AND OF THE ADDITION

OF XYLIDINE ON ANILINE POINTS

After the aniline points reported in table 2 had been measured, the National Bureau of Standards was requested to determine the effect on aniline point of the addition of

xylidine to aviation fuels. As about 6 weeks had elapsed since the original determinations of aniline points, new measurements were made on samples of a number of the fuels. Most of the values obtained were found to differ from the original values, as shown by the data given in the third column of table 4. The changes in aniline point in the 6-week period ranged from +0.4° to -1.1° F, the average change being -0.36° F. One percent xylidine was then added to each of the samples, after which new measurements of aniline points were made. The effect of the addition of 1 percent xylidine, as shown by the data in the fifth column of table 4, was a change in aniline point by amounts ranging from -0.9° to -1.6° F, the average change being -1.19° F.

Ten weeks after the original measurements of aniline points, new measurements were made on samples of fuels 4 and 7, to which no xylidine had been added previously. Three percent of xylidine was then added to each of these samples, and the measurements of aniline points were repeated. The results of these measurements, given in the fourth and sixth columns of table 4, show that the changes in aniline point for fuels 4 and 7 in a period of 10 weeks were -0.6° and 1.2° F, respectively, and that the addition of 3 percent xylidine resulted in changes of -4° and -3.1° F, respectively, for these two fuels. No investigation was made to determine whether the changes in aniline point with time were due to evaporation loss or to other causes.

CONCLUDING REMARKS

Values obtained for the net heats of combustion of 31 aviation gasolines, and values reported in the literaturo for pure hydrocarbons are reasonably well represented as a function of hydrogen content by means of the linear equation

$$Q_{p}$$
 (net) = 15365 + 234 (percent H) Btu/lb

When this equation is combined with the relation connecting gross and net heat of combustion and hydrogen content, there is obtained the relation

$$Q_p$$
 (net) = 4310 + 0.7195 Q_v (gross) Btu/lb

which can be used to calculate net from measured gross heat of combustion when the hydrogen content is not known.

Values obtained for the not heat of combustion of 57 aviation gasolines were found to be a linear function of either the aniline point or the aniline point-gravity product. These linear functions are shown graphically and by means of tables.

National Buroau of Standards, Washington, D. C., May 14, 1945.

REFERENCES

- Jossup, R. S., and Green, C. B.: Ros. Paper 721, Nat. Bur. of Standards Jour. Res., vol. 13, 1934, p. 469.
- 2. Jessup, R. S.: Res. Papor 966, Nat. Bur. of Standards Jour. Ros., vol. 18, 1937, p. 115.
- 3. Proson, E. J. R., and Rossini, F. D.: Ros. Paper 1420, Bur. of Standards Jour. Ros., vol. 27, 1941, p. 289.
- 4. Kronan, Joseph H., and Keyes, Frederick G.: Thermodynamic Properties of Steam, Including Data for the Liquid and Solid Phases. John Wiley and Sons, Inc., 1936.
- 5. Prosen, E. J. R., and Rossini, F. D.: Res. Paper 1439, Nat. Bur. of Standards Jour. Ros., vol. 27, 1941, p. 519.
- 6. Jones, W. H., and Starr, C. E. Jr.: Ind. Eng. Chem. (Analyt. Ed.), vol. 13, 1941, p. 287.

Table 1. Specific Gravity and Distillation Data on 31 Gasolines

Distillation, oF at										
Fuel No.	50./60°F	10	% evapo:	rated 50	90	End Point	Loss			
1	.7209	139	186	200	262	316	1.1			
2	.7135	143	190	205	263	324	1.1			
3	.7199	138	170	183	269	333	1.1			
4	.7104	149	194	205	245	351	1.0			
5	.7177	138	194	211	268	350	1.3			
6	. 7369	143_	202	219	284	343	0.9			
7	.7363	142	194	211	281	338	1.2			
g	.7094	140	167	178	271	334	1.3			
9	.7203	142	178	190	275	343	1.2			
10	.7157	143	182	195	263	333	1.2			
11	.7167	142	171	182	286	338	0.9			
12	.7114	136	170	184	276	343	1.0			
13	.7177	140	178	192	279	329	1.0			
14	.7268	151	505	213	280	338	1.1			
15	.7214	137	187	207	274	330	1.2			
16	.7265	133	190	210	283	336	1.3			
17	.7249	148	201	212	274	343	1.1			
18	.7099	142	193	211	264	353	1.1			
19	.7224	145	201	217	288	356	1.2			
20	.7285	141	202	550	287	348	0.9			
21	.7213	139	192	208	287	348	1.2			
22	.7244	142	190	506	283	345	1.1			
23	.7253	136	188	208	282	334	0.8			
24	.7271	147	203	221	284	334	1.1			
25	.7221	140	200	215	58,1	340	1.2			
26	.7226	132	180	197	283	351	1.1			
27	.7321	138	188	207	289	.340	1.0			
28	.7234	142	180	196	282	333	1.1			
29	.7299	149	204	218	259	307	1.2			
30	.7079	141	178	189	253	298	1.0			
31	.7416	142	207	225	289	346	1.0			

3

__

Gravity, Aniline Point, Hydrogen Content, and Heat of Combustion of 31 Gasolines

Fuel No. Point Point Product				1 2 2 2					
Product Content Gross Net Net** Net** **Product Content Gross Net** Net** Net** **Product Content Gross Net** Net** Net** Net** **Product Content Gross Net** Net** Net** Net** Net** **Product Content Gross Net** N	Fuel	Gravity			Hydro-				·
Product Content Gross Net Net** Net** **Product Content Gross Net** Net** Net** **Product Content Gross Net** Net** Net** Net** **Product Content Gross Net** Net** Net** Net** Net** **Product Content Gross Net** N	No.	10,000	Point	Gravity	gen	Observ	ed	Calcul	Lated
OAPI OF	{ .	٠		Product	Content		Netb	Netc	Neta
1 64.8 121.3 7860 14.8 20121 18771 18787 18751 2 66.8 136.4 9112 15.2 20250 18863 18880 18882 18892 165.1 122.8 8059 14.8 20152 18802 18809 18772 4 67.7 146.5 9918 15.7 20395 18963 18984 18944 18976 65.7 135.0 8870 15.1 20254 18876 18883 18845 18845 66.5 122.8 7429 14.7 20077 18736 18755 18719 7 60.7 108.3 6574 14.3 19913 18608 18637 18603 868.0 131.5 8942 14.9 20247 18888 18878 18840 19965 10 66.2 132.8 8791 15.2 20241 18854 18873 18830 10 66.2 132.8 8791 15.2 20241 18854 18873 18800 10 66.2 132.8 8791 15.2 20241 18854 18837 18800 12 67.4 120.6 8802 15.0 20191 18841 18837 18800 12 67.4 120.0 8344 14.9 20170 18821 18822 18785 144.6 63.2 132.3 8361 14.7 20191 18850 18837 18800 15 64.6 120.0 7752 14.6 20049 18717 18735 18700 16 63.3 115.2 7292 14.2 20191 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18916 19 64.4 127.4 8205 15.0 20171 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18916 19 64.4 127.4 8205 15.0 20171 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18916 18763 18702 18702 18703 18702 18703 18703 18702 18703 18703 18703 18705 18703 18705 18703 18705 18703 18705 18703 18705		, K. 3		ŧ	1	j		ì	
1 64.8 121.3 7860 14.8 20121 18771 18787 18751 2 66.8 136.4 9112 15.2 20250 18863 18880 18882 18892 165.1 122.8 8059 14.8 20152 18802 18809 18772 4 67.7 146.5 9918 15.7 20395 18963 18984 18944 18976 65.7 135.0 8870 15.1 20254 18876 18883 18845 18845 66.5 122.8 7429 14.7 20077 18736 18755 18719 7 60.7 108.3 6574 14.3 19913 18608 18637 18603 868.0 131.5 8942 14.9 20247 18888 18878 18840 19965 10 66.2 132.8 8791 15.2 20241 18854 18873 18830 10 66.2 132.8 8791 15.2 20241 18854 18873 18800 10 66.2 132.8 8791 15.2 20241 18854 18837 18800 12 67.4 120.6 8802 15.0 20191 18841 18837 18800 12 67.4 120.0 8344 14.9 20170 18821 18822 18785 144.6 63.2 132.3 8361 14.7 20191 18850 18837 18800 15 64.6 120.0 7752 14.6 20049 18717 18735 18700 16 63.3 115.2 7292 14.2 20191 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18916 19 64.4 127.4 8205 15.0 20171 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18916 19 64.4 127.4 8205 15.0 20171 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18916 18763 18702 18702 18703 18702 18703 18703 18702 18703 18703 18703 18705 18703 18705 18703 18705 18703 18705 18703 18705	1	OAPI	o Fr	OFX OAPI	% —	Btu/lb	Btu/1b	Btu/lb	Btu/lb
2 66.8 136.4 9112 15.2 20250 18863 18880 18842 4 67.7 146.5 9918 15.7 20152 18802 18984 18772 5 65.7 135.0 8870 15.1 20254 18863 18884 18984 6 6.5 122.8 7429 14.7 20077 18736 18755 18719 7 60.7 108.3 6574 14.3 19913 18608 18637 18603 8 68.0 131.5 8942 14.9 20247 18888 18878 18840 9 65.0 127.2 8268 14.9 20191 18832 18873 18840 10 66.2 132.8 8791 14.9 20191 18832 18873 18840 12 82.9 126.1 8310 14.8 20191 18841 18837 18800 12 67.4 130.6 8802 15.0 20197 18821 18837 18804 13<				 	ļ	 	<u> </u>		
2 66.8 136.4 9112 15.2 20250 18863 18880 18842 4 67.7 146.5 9918 15.7 20152 18802 18984 18772 5 65.7 135.0 8870 15.1 20254 18863 18884 18984 6 6.5 122.8 7429 14.7 20077 18736 18755 18719 7 60.7 108.3 6574 14.3 19913 18608 18637 18603 8 68.0 131.5 8942 14.9 20247 18888 18878 18840 9 65.0 127.2 8268 14.9 20191 18832 18873 18840 10 66.2 132.8 8791 14.9 20191 18832 18873 18840 12 82.9 126.1 8310 14.8 20191 18841 18837 18800 12 67.4 130.6 8802 15.0 20197 18821 18837 18804 13<	(1	64.8	121.3	7860	14.8	20121	18771	18787	18751
123.8 8059 14.8 20152 18802 18909 18772 146.5 9918 15.7 20395 18963 18944 18944 18576 18583 18645 18583 18645 18657 18715	2	66.8	136.4			20250	18863		18842
4 67.7 146.5 9918 15.7 20395 18963 18984 18984 5 65.7 122.8 7429 14.7 20077 18736 18759 18719 7 60.7 108.3 6574 14.3 19913 18668 18637 18603 8 68.0 131.5 8942 14.9 20247 18888 18878 18840 9 65.0 127.2 8268 14.9 20191 18832 18537 18500 10 66.2 132.8 8791 15.2 20241 18853 18873 18800 12 65.9 126.1 8310 14.8 20191 18841 18873 18800 12 67.4 130.6 8802 15.0 20197 18829 18784 18804 13 65.7 127.0 8341 14.7 20191 18857 18864 14 63.2 132.3 8361 14.7 20191 18850 18377 18500 15 64.	7	65.1	123.8		14.8	20152			18772
5 65.7 135.0 8870 15.1 20254 18876 18883 18845 7 60.7 108.3 6574 14.7 20077 18736 18755 18719 8 68.0 131.5 6942 14.9 20247 18888 18878 18840 9 65.0 127.2 8268 14.9 20191 18832 18837 18800 10 66.2 132.8 8791 15.2 20191 18832 18873 18835 11 65.9 126.1 8310 14.9 20191 18832 18873 18800 12 67.4 130.6 8802 15.0 20191 18859 18842 18504 13 65.7 127.0 8344 14.9 20197 18859 18522 18765 14 63.2 132.3 8361 14.7 20191 18850 18371 18500 15 64.6 120.0	1 1	67.7	146.5	9918	15.7			78084	7 80 44
11 65.9 126.1 8310 14.8 20191 18841 18837 18600 12 67.4 130.6 8802 15.0 20197 18829 18842 18804 13 65.7 127.0 8344 14.9 20170 18811 18822 18785 14 63.2 132.3 8361 14.7 20191 18850 18337 18500 15 64.6 120.0 7752 14.6 20049 18717 18735 18700 16 63.3 115.2 7292 14.6 20049 18717 18699 18664 17 63.8 127.8 8154 14.7 20171 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18786 19 64.4 127.4 8205 15.0 20171 18803 18767 18731 21 64.7 127.2 8230 14.6 20145 18813 18667 18768	5	65.7	135.0.	8870	15.1	20254	18875	18883	38845
11 65.9 126.1 8310 14.8 20191 18841 18837 18600 12 67.4 130.6 8802 15.0 20197 18829 18842 18804 13 65.7 127.0 8344 14.9 20170 18811 18822 18785 14 63.2 132.3 8361 14.7 20191 18850 18337 18500 15 64.6 120.0 7752 14.6 20049 18717 18735 18700 16 63.3 115.2 7292 14.6 20049 18717 18699 18664 17 63.8 127.8 8154 14.7 20171 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18786 19 64.4 127.4 8205 15.0 20171 18803 18767 18731 21 64.7 127.2 8230 14.6 20145 18813 18667 18768	16	86.5	วีฮฮ์ สั		14.7	20077	18736	18755	18719
11 65.9 126.1 8310 14.8 20191 18841 18837 18600 12 67.4 130.6 8802 15.0 20197 18829 18842 18804 13 65.7 127.0 8344 14.9 20170 18811 18822 18785 14 63.2 132.3 8361 14.7 20191 18850 18337 18500 15 64.6 120.0 7752 14.6 20049 18717 18735 18700 16 63.3 115.2 7292 14.6 20049 18717 18699 18664 17 63.8 127.8 8154 14.7 20171 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18786 19 64.4 127.4 8205 15.0 20171 18803 18767 18731 21 64.7 127.2 8230 14.6 20145 18813 18667 18768	1 7	60 7	108.3		14.3	19913	18668	1 18637	18603
11 65.9 126.1 8310 14.8 20191 18841 18837 18600 12 67.4 130.6 8802 15.0 20197 18829 18842 18804 13 65.7 127.0 8344 14.9 20170 18811 18822 18785 14 63.2 132.3 8361 14.7 20191 18850 18337 18500 15 64.6 120.0 7752 14.6 20049 18717 18735 18700 16 63.3 115.2 7292 14.6 20049 18717 18699 18664 17 63.8 127.8 8154 14.7 20171 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18786 19 64.4 127.4 8205 15.0 20171 18803 18767 18731 21 64.7 127.2 8230 14.6 20145 18813 18667 18768	ø	68.0	131.5	ROTTS	านั้	20217		18878	าสสมก
11 65.9 126.1 8310 14.8 20191 18841 18837 18600 12 67.4 130.6 8802 15.0 20197 18829 18842 18804 13 65.7 127.0 8344 14.9 20170 18811 18822 18785 14 63.2 132.3 8361 14.7 20191 18850 18337 18500 15 64.6 120.0 7752 14.6 20049 18717 18735 18700 16 63.3 115.2 7292 14.6 20049 18717 18699 18664 17 63.8 127.8 8154 14.7 20171 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18786 19 64.4 127.4 8205 15.0 20171 18803 18767 18731 21 64.7 127.2 8230 14.6 20145 18813 18667 18768	9	65.0	127.2	8268	TIL Ó A			18837	
11 65.9 126.1 8310 14.8 20191 18841 18837 18600 12 67.4 130.6 8802 15.0 20197 18829 18842 18804 13 65.7 127.0 8344 14.9 20170 18811 18822 18785 14 63.2 132.3 8361 14.7 20191 18850 18337 18500 15 64.6 120.0 7752 14.6 20049 18717 18735 18700 16 63.3 115.2 7292 14.6 20049 18717 18699 18664 17 63.8 127.8 8154 14.7 20171 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18786 19 64.4 127.4 8205 15.0 20171 18803 18767 18731 21 64.7 127.2 8230 14.6 20145 18813 18667 18768	10	66.5	172 K		15.2			18877	
12 67.4 130.6 8802 15.0 20197 18829 18842 18604 13 65.7 127.0 8344 14.9 20170 18811 18822 18785 14 63.2 132.3 8361 14.7 20191 18850 18837 18600 15 64.6 120.0 7752 14.6 20049 18717 18735 18700 16 63.3 115.2 7292 14.2 19999 18704 18699 18664 17 63.8 127.8 8154 14.7 20171 18830 18823 18766 18 67.5 142.3 9648 15.5 20355 18941 18955 18916 19 64.4 127.4 8205 15.0 20171 18803 18823 18786 19 64.7 127.2 8230 14.6 20145 18813 18604 18731 21 64.7 127.2 8230 14.6 20145 18729 18702 23 63.6 119.3 7611 14.5 20052 18729 18698 18663 24 63.1 121.6 7673 <		65.0	156.4		11.8			18877	
14 63.2 132.3 8361 14.7 20191 18850 18837 18800 15 64.6 120.0 7752 14.6 20049 18717 18735 18700 16 63.3 115.2 7292 14.2 19999 18704 18699 18664 17 63.8 127.8 8154 14.7 20171 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18916 19 64.4 127.4 8205 15.0 20171 18803 18823 18786 20 62.7 119.7 7505 14.3 20093 18788 18767 18731 21 64.7 127.2 8230 14.6 20145 18813 18804 18768 22 63.8 119.3 7611 14.5 20052 18729 18737 18702 23 63.6 115.9 7371 14.5 19997 18674 18698 18663 24 63.1 121.6 7673 14.6 20041 18709 18729 18694 25 64.5 120.9	12	22,1			35.0		18820	14475	
14 63.2 132.3 8361 14.7 20191 18850 18837 18800 15 64.6 120.0 7752 14.6 20049 18717 18735 18700 16 63.3 115.2 7292 14.2 19999 18704 18699 18664 17 63.8 127.8 8154 14.7 20171 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18916 19 64.4 127.4 8205 15.0 20171 18803 18823 18786 20 62.7 119.7 7505 14.3 20093 18788 18767 18731 21 64.7 127.2 8230 14.6 20145 18813 18804 18768 22 63.8 119.3 7611 14.5 20052 18729 18737 18702 23 63.6 115.9 7371 14.5 19997 18674 18698 18663 24 63.1 121.6 7673 14.6 20041 18709 18729 18694 25 64.5 120.9	172	ξέ <u>"</u> ξ	127.0	8.2HT	14.0	20170	าสสาร	18822	18785
15 64.6 120.0 7752 14.6 20049 18717 18735 18700 16 63.3 115.2 7292 14.2 19999 18704 18699 18664 17 63.8 127.8 8154 14.7 20171 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18916 19 64.4 127.4 8205 15.0 20171 18803 18823 18786 20 62.7 119.7 7505 14.3 20093 18788 18767 18731 21 64.7 127.2 8230 14.6 20145 18813 18804 18768 22 63.8 119.3 7611 14.5 20052 18729 18737 18702 23 63.6 115.9 7371 14.5 19997 18674 18698 18663 24 63.1 121.6 7673 14.6 20041 18799 18729 18760	11	67 2		8361	11 7			18837	
16 63.3 115.2 7292 14.2 19999 18704 18699 18664 17 63.8 127.8 8154 14.7 20171 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18916 19 64.4 127.4 8205 15.0 20171 18803 18823 18786 20 62.7 119.7 7505 14.3 20093 18788 18767 18731 21 64.7 127.2 8230 14.6 20145 18813 18804 18768 22 63.8 119.3 7611 14.5 20052 18729 18737 18702 23 63.6 115.9 7371 14.5 19997 18674 18698 18663 24 63.1 121.6 7673 14.6 20041 18709 18729 18694 25 64.5 120.9 7774 14.5 20083 18760 18760 18724	116	ŽI, Ž	120.0	7752	14.6	200110		18775	
17 63.8 127.8 8154 14.7 20171 18830 18823 18786 18 67.8 142.3 9648 15.5 20355 18941 18955 18916 19 64.4 127.4 8205 15.0 20171 18803 18823 18786 20 62.7 119.7 7505 14.3 20093 18788 18767 18731 21 64.7 127.2 8230 14.6 20145 18813 18804 18768 22 63.8 119.3 7611 14.5 20052 18729 18737 18702 23 63.6 115.9 7371 14.5 19997 18674 18698 18663 24 63.1 121.6 7673 14.6 20041 18709 18729 18694 25 64.5 120.9 7774 14.5 20083 18760 18760 18724 26 64.3 120.9 7774 14.5 20083 18667 18699 18664 27 61.3 113.0 6983 14.6 19999 18667 18699 18733 28 64.1 127.0	116	67 7	115.2	7202	านิว a	19096	18704	18600	
18 67.5 142.3 9648 15.5 20355 18941 18955 18916 19 64.4 127.4 8205 15.0 20171 18803 18823 18786 20 62.7 119.7 7505 14.3 20093 18788 18767 18731 21 64.7 127.2 8230 14.6 20145 18813 18804 18768 22 63.8 119.3 7611 14.5 20052 18729 18737 18702 23 63.6 115.9 7371 14.5 19997 18674 18698 18663 24 63.1 121.6 7673 14.6 20041 18709 18729 18694 25 64.5 120.9 7778 14.7 20135 18794 18797 18760 26 64.3 120.9 7774 14.5 20083 18760 18760 18724 27 61.3 113.0 6983 14.6 19999 18667 18699 18664 28 64.1 127.0 8141 14.6 20096 18764 18769 18733	177	64.8	127 8	41 FL	74.7	20171		18423	
19 64.4 127.4 8205 15.0 20171 18803 18823 18786 20 62.7 119.7 7505 14.3 20093 18788 18767 18731 21 64.7 127.2 8230 14.6 20145 18813 18804 18768 22 63.8 119.3 7611 14.5 20052 18729 18737 18702 23 63.6 115.9 7371 14.5 19997 18674 18698 18663 24 63.1 121.6 7673 14.6 20041 18709 18729 18694 25 64.5 120.9 7778 14.7 20135 18794 18797 18760 26 64.3 120.9 7774 14.5 20083 18760 18760 18724 27 61.3 113.0 6983 14.6 19999 18667 18699 18664 28 64.1 127.0 8141 14.6 20096 18764 18769 18733	178	67 g	112.3	OKILE		20755		18055	
20 62.7 119.7 7505 14.3 20093 18788 18767 18731 21 64.7 127.2 8230 14.6 20145 18813 18804 18768 22 63.8 119.3 7611 14.5 20052 18729 18737 18702 23 63.6 115.9 7371 14.5 19997 18674 18698 18663 24 63.1 121.6 7673 14.6 20041 18709 18729 18694 25 64.5 120.9 7778 14.7 20135 18794 18797 18760 26 64.3 120.9 7774 14.5 20083 18760 18760 18724 27 61.3 113.0 6983 14.6 19999 18667 18699 18664 28 64.1 127.0 8141 14.6 20096 18764 18769 18733	10	KH. H	127 1	\$20E	16.0	20171	18807	1 8 8 2 7	
21 64.7 127.2 8230 14.6 20145 18813 18804 18768 22 63.8 119.3 7611 14.5 20052 18729 18737 18702 23 63.6 115.9 7371 14.5 19997 18674 18698 18663 24 63.1 121.6 7673 14.6 20041 18709 18729 18694 25 64.5 120.9 7778 14.7 20135 18794 18797 18760 26 64.3 120.9 7774 14.5 20083 18760 18760 18724 27 61.3 113.0 6983 14.6 19999 18667 18699 18664 28 64.1 127.0 8141 14.6 20096 18764 18769 18733	120	62.7	110 7		זוני י		18788		18777
22 63.8 119.3 7611 14.5 20052 18729 18737 18702 23 63.6 115.9 7371 14.5 19997 18674 18698 18663 24 63.1 121.6 7673 14.6 20041 18709 18729 18694 25 64.5 120.9 7778 14.7 20135 18794 18797 18760 26 64.3 120.9 7774 14.5 20083 18760 18760 18724 27 61.3 113.0 6983 14.6 19999 18667 18699 18664 28 64.1 127.0 8141 14.6 20096 18764 18769 18733	27	64.7	197 9		11.5		16612		
23 63.6 115.9 7371 14.5 19997 18674 18698 18663 24 63.1 121.6 7673 14.6 20041 18709 18729 18694 25 64.5 120.9 7798 14.7 20135 18794 18797 18760 26 64.3 120.9 7774 14.5 20083 18760 18760 18724 27 61.3 113.0 6983 14.6 19999 18667 18699 18664 28 64.1 127.0 8141 14.6 20096 18764 18769 18733	22	67 g	110 7		11 E	20177			
24 63.1 121.6 7673 14.6 20041 18709 18729 18694 25 64.5 120.9 7798 14.7 20135 18794 18797 18760 26 64.3 120.9 7774 14.5 20083 18760 18760 18724 27 61.3 113.0 6983 14.6 19999 18667 18699 18664 28 64.1 127.0 8141 14.6 20096 18764 18769 18733	27	63.6	115.0	7777	11 E		70/27	10/5/	10667
25 64.5 120.9 7798 14.7 20135 18794 18797 18760 26 64.3 120.9 7774 14.5 20083 18760 18760 18724 27 61.3 113.0 6983 14.6 19999 18667 18699 18664 28 64.1 127.0 8141 14.6 20096 18764 18769 18733	151	23.0	† 5 7•2	1517	41.5	52221	18700	16720	18601
27 61.3 113.0 6983 14.6 19999 18667 18699 18664 28 64.1 127.0 8141 14.6 20096 18764 18769 18733	25		120.0	7704	11 7		10707		10074
27 61.3 113.0 6983 14.6 19999 18667 18699 18664 28 64.1 127.0 8141 14.6 20096 18764 18769 18733	152	27.3	T50.7	(170	17. /	20135	10134	+8/2/	TO (O)
28 64.1 127.0 8141 14.6 20096 18764 18769 18733	27	27.3	117 0	(((4	÷#•3		TOLOU	19/00	10/64
29 62.14 118.2 7376 14.8 20096 18708 18742 18706 30 68.4 139.3 9528 15.3 20316 18920 18927 18888 31 59.3 102.9 6102 14.0 19835 18558 18581 18548	126		7720	9787	14.0	72222		19099	10004
29 02.4 118.2 7376 14.8 20058 18708 18742 18706 30 68.4 139.3 9528 15.3 20316 18920 18927 18888 31 59.3 102.9 6102 14.0 19835 18588 18581 18581 18588	20		121.0		T4.0	20096	18(04	15/09	10123
31 59.3 102.9 6102 14.0 19835 18588 18681 18688	153	25.1	112.5	1378	14.5	20058			T8400
41 59.4 1.02.9 6102 14.0 19835 1858 1858) 19648	120		±37.3	7748	15.2				TOOOQ
	131	59.3	105.9	0105	14.0	19835	エロシシロ	TOPPT	18548

a Values of hydrogen content determined from weight of water formed on combustion. The sum of carbon and hydrogen percentages were 98.9 and 98.7 for samples 9 and 16, respectively, whereas 99.7 was the average for the other samples.

Net Btu/lb = $4525 + 0.7070 \times Gross Btu/lb$

b Qp(net) calculated from equation (1) c Qp(net) calculated from equation (5) d Net heat of combustion calculated from the equation given in Specification AN-F-28, Amendment-3, namely

Table 3. Gravity, Aniline Point and Heat of Combustion of 26 Gasolines

				Heat of Combustion			
Fuel	Gravity	Aniline	Aniline-	Observed	Calculated	Calculated	
No.	_	Point	Gravity	Gross	Net a	Net D	
	°API	o _F	Product °Fx°API	Btu/1b	Btu/lb	Btu/lb	
23456789012345678	74605299%9932213	111.9 116.1 109.9 128.9 118.4 120.4 120.4 120.4 121.8 131.2 116.8 131.2 113.5 127.2 111.2	7016 7361 6990 8507 7493 7730 7713 6014 7746 8646 7425 67374 7173 8281 6817	19986 19944 19990 20162 20027 20086 20049 19843 20067 20183 20054 19954 20178 19960	18690 18660 18693 18817 18720 18762 18765 18587 18739 18671 18815 18815 18815 18815	18655 18658 18658 18789 18789 18709 18712 18779 18779 18677 18637	
149 55 55 55 55 55 55 55 55 55 55 55	31267405719 666666666666666666666666666666666666	109.9 110.1 105.1 122.2 108.1 111.9 110.8 111.4 106.0 101.1	6825 6738 6738 6369 7906 6637 7050 6985 6477 6157	19936 19949 19912 20085 19933 19959 19964 19980 19858	18654 18663 18637 18761 18652 18670 18674 18685 18687	18629 18629 18603 18725 18618 18648 18640 18651 18655 18655	

a $Q_p(net)$ calculated from equation (5)

Net Btu/1b = 4525 + 0.7070 Gross Btu/1b

b Net heat of combustion calculated from the equation given in Specification AN-F-28, Amendment 3, namely

Table 4. Effect of Time and of the Addition of Xylidine on the Aniline Points of Gasolines.

			<u> </u>			
Initial Aniline Fuel No. Point, or		Change wi	th time, deg.F	Change with Addition of Xylidine, deg.F		
		6 weeks	10 weeks	1 percent	3 percent	
234567890123456789 11111190123456789	1326.4 1145.2 1326.5 13	00044791005541005004041055	-0.6	4 9/6# 9/9/# 3# 3111117# 1119/# 3# 191 -1 -1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	-4. -3.1	
Average	change	36	90	-1.19	-3.6	

Table 5. Values of Qp(net) for Various Values of the Aniline Point

Aniline Point of	Q _p (net) Btu/lb	Aniline Point or	Q _p (net) Btu/lb	Aniline Point or	Q _p (net) Btu/lb
90	18492	110	18662	130	18832
91	18501	111	18671	131	18810
92	18509	112	18679	132	18849
93	18518	113	` 18688	133	18857
94	18526	114	18696	134	18866
95	18535	115	18705	135	18874
96	18543	116	18713	136	18883
97	18552	117 .	18721	137	18891
98	18560	118	18730	138	18900
99	18569	119	18738	139	1,8908
100	18577	120	18747	140	1,8917
101	18586	121	18755	141	18925
102	18594	122	18764	142	18934
103	18603	123	18772	143	18942
104	18611	124	18781	7,4,4	18951
105	18620	125	18789	145	18959
106	18628	126	18798	146	18968
107	18637	127	18806	147	18976
108	18645	128	18815	148	18985
109	18654	129	18823	149	18993

a Calculated from the equation

 $Q_p(net) = 17727.7 + 8.494 (An Pt)$

Table 6. Values of Qp(net) for various values of the aniline point-gravity product a

	<u>, a., </u>	DOT110		<u> </u>	<u> </u>	
Aniline Point- Gravity Product	Q _p (net)	Aniline Point- Gravity Product	Q _p (net)	Aniline Point- Gravity Product	Qp(net)	•
°Fx°API	Btu/lb	°Fx°API	Btu/lb	orx oapi	Btu/lb	
5000	18484	7000	18681	9000	18878	
5100	18494	7100	18691	9100	18887	
5200	18504	7200	18700	9200	18897	
5300	18513	7300	18710	9300	18907	
5400	18523	7400	18720	9400	18917	
5500	18533	7500	18730	9500	18927	
5600	18543	7600	18740	9600	18937	
5700	18553	7700	18750	9700	18946	
5800	1.8563	7800	18759	9800	18956	4
5900	18573	7900	18769	9900	1 8 966	•
6000	18582	8000	18779	10000	18976	
6100	18592	81 00	18789	10100	18986	
6200	18602	8200	18799	10200	18996	
6300	18612	8300	18809	10300	19005	
6400	18622	8400	18818	10400	19015	
6500	18632	8500	18828		į	
6600	18641	8600	18838			
6700	18651	8700	18848			
6800	18661	8800	18858			•
6900	18671	8 900	18868			•

a Calculated from the equation Qp(net) = 17992.0 + 0.09839 (AnPt-Gr)

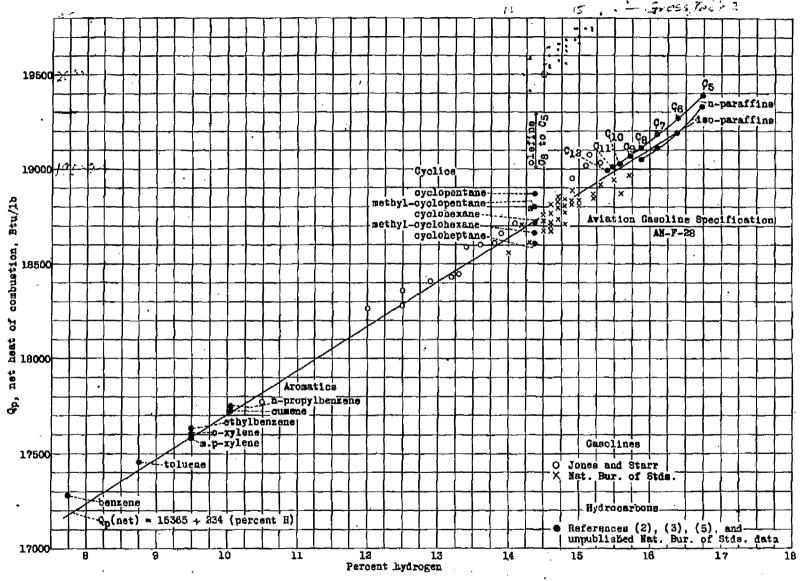


Figure 1.- Comparative data on gasoline and hydrocarbons; variation of net heat of combustion, Qp at 250 C with percent H; Qp(net) calculated from observed values of Qp(gross) and percent H by means of equation (1).

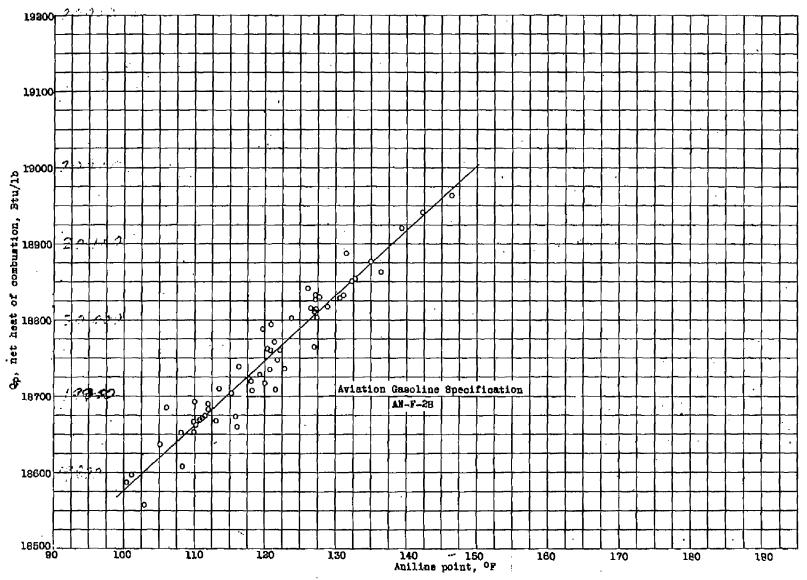


Figure 2.- Variation of net heat of combustion, Q_0 at 25° C. With aniline point; $Q_p(\text{net})$ calculated from observed values of $Q_p(\text{gross})$ and percent H by means of equation (1) or (5).



Figure 3.- Variation of net heat of combustion, Qp at 25° C, with gravity; Qp(net) calculated from observed values of Qy(gross) of and percent H by means of equation (1) or (5).

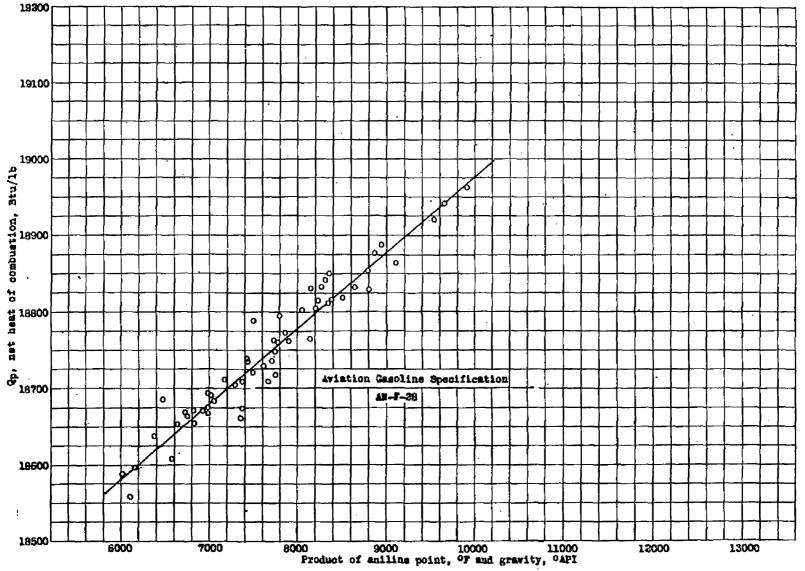


Figure 4.- Variation of net heat combustion, Qp at 250 C, with aniline point-gravity product; Qp(net) calculated from observed values of Qp(gross) and percent H by means of equation (1) or (5).

TITLE: Net H	. C.	AVII- 8451 ENVISION DODE COMA AGENCY NO. TN -996								
DATE Towns 2.45	BOC. CLASS	COUNTRY	LANGUAGE	PAGES	An blos					
ABSTRACT:	June'45 Restr. U.S. Eng. 22 tables, graphs A formula is presented for computing net heat of combustion of AN-F-28 aviation gasolines from measured gross heat of combustion. The formula is sufficiently accurate and eliminates necessity of making hydrogen determinations. Tabulated data are given on heats of combustion and graphs, showing the relation between net heat of combustion and hydrogen content, aniline point, API gravity and the product of aniline point and API gravity.									
DISTRIBUTION: Request copies of this report only from Originating Agency DIVISION: Fuels and Lubricants (12) SUBJECT HEADINGS: Fuels, Liquid - Testing (42680);										
SECTION: Analysis and Testing (8) ATI SHEET NO.: R-12-8-18 Combustion (23600)								(*2000/;		
	Air Motoriol Commond AIR VECNOSICAL INDEX Wright-Pattorson Air Force Base U.S. Air Force RESTRICTED Dayton, Ohio									
